
Note: In this problem set, expressions in green cells match corresponding expressions in the
text answers.
Clear["Global`*⋆"]

Intro. The standard way to get an interpolating function in Mathematica is to ask for it.
However, as I discuss in problem 7, there may be a better way, since the nonavailability of
the equation for the interpolated function is a decided disadvantage. What I do here is to
call an interpolated function, then use it to manufacture a list of 200 points, then employ
the Fit command to design a function which mimics the interpolated function, giving it the
assignment of developing a curve from the 200 sample points, leveraging the advantage of
its 20-exponent variable span in creating the curve. I thought this was smart when I did it,
but I now think it is junk.
data = {{0, 0}, {0.1, .3}, {0.5, .6}, {1, -−.2}, {2, 3}}

{{0, 0}, {0.1, 0.3}, {0.5, 0.6}, {1, -−0.2}, {2, 3}}

f = Interpolation[data]

InterpolatingFunction Domain: {{0., 2.}}
Output: scalar

datai = Table[{n, f[n]}, {n, 0, 2, 0.01}];

The interpolating polynomial is extremely long and cumbersome-looking. Just sticking it in
here.
ip = InterpolatingPolynomial[datai, x];

tf = Fitdatai, x20, x19, x18, x17, x16, x15, x14,

x13, x12, x11, x10, x9, x8, x7, x6, x5, x4, x3, x2, x, x0, x

0.00101515 + 3.22001 x + 11.1129 x2 -− 346.654 x3 + 3852.28 x4 -− 25880.5 x5 +
114305. x6 -− 348455. x7 + 755491. x8 -− 1.18323 × 106 x9 + 1.33993 × 106 x10 -−
1.07486 × 106 x11 + 569043. x12 -− 147155. x13 -− 37781.9 x14 + 55021.7 x15 -−
25 820.5 x16 + 6817.26 x17 -− 1021.29 x18 + 71.9705 x19 -− 0.901307 x20

lm = LinearModelFitdata, x4, x3, x2, x, x0, x;

p1 = ListPlot[data, PlotStyle → Red, Filling → Bottom, ImageSize → 400];

p2 = Plot[lm[x], {x, 0, 2},
ImageSize → 400, PlotStyle → {Blue, Thickness[0.002]}];

p3 = Plot[f[x], {x, 0, 2}, ImageSize → 400,
PlotStyle → {Orange, Thickness[0.002]}];

p4 = Plot[tf, {x, 0, 2}, ImageSize → 400,
PlotStyle → {Green, Thickness[0.002]}];

p5 = Plot[tf, {x, 0.8, 1.2},
ImageSize → 300, PlotStyle → {Green, Thickness[0.002]}];

p6 = Plot[f[x], {x, 0.8, 1.2},
ImageSize → 300, PlotStyle → {Orange, Thickness[0.002]}];

The blue of the unsophisticated linear model fit, lm, takes a different path than the interpo-
lated function f, as shown on the left plot. The ornate fit function tf, with all its exponents,
is not seen in the left chart, where at the presentation scale it is totally hidden by the interpo-
lating curve f, and only peeks out in the right chart, where it emerges to smooth a visible
corner in f. That visible orange corner, I believe, is evidence that the interpolation function
assembles a sequence of piecewise functions to do the job, using as many as it finds
necessary.
Row[{Show[{p2, p4, p3, p1}], Show[{p5, p6}]}]

0.9 1.0 1.1 1.2

-−0.4

-−0.3

-−0.2

-−0.1

0.1

0.2

1. Linear interpolation. Calculate p1[x] in example 1 and from it Log[9.3].

Clear["Global`*⋆"]

The real substance of problem 1 is just a log, worked out by hand according to the very
similar example 1 on p. 810 and amounting to

0.4(Log[9.0]) + 0.6(Log[9.5]) =

2 19.3 Interpolation 808revB.nb

.4 (2.1972) + .6 (2.2513)

2.22966

N[Log[9.3] -− %]

0.0003544

The error, noted above, is not listed in the text answer.

3. Quadratic interpolation. Gamma function. Calculate the Lagrange polynomial p2(x) for
the values Γ[1.00]=1.0000, Γ[1.02]=0.9888, Γ[1.04]=0.9784 of the gamma function
((24) in appendix A3.1) and from it approximations of Γ[1.01] and Γ[1.03].

As can be seen, I elected to use an InterpolatingPolynomial instead of a Lagrange
method.
Clear["Global`*⋆"]

inpp[x_] = InterpolatingPolynomial[
{{1.00, 1.000}, {1.02, 0.9888}, {1.04, 0.9784}}, x]

0.9784 + (-−0.54 + 1. (-−1. + x)) (-−1.04 + x)

Plot[inpp[x], {x, 0.96, 1.05}, ImageSize → 200,
PlotStyle → {Red, Thickness[0.006]}, AspectRatio → 1,
Epilog → {{Blue, PointSize[0.02], Point[{1.00, 1.000}]},

{Blue, PointSize[0.02], Point[{1.02, 0.9888}]},
{Blue, PointSize[0.02], Point[{1.04, 0.9784}]},
{Orange, PointSize[0.03], Point[{1.01, 0.9943}]},
{Orange, PointSize[0.03], Point[{1.03, 0.9835}]}}]

0.98 1.00 1.02 1.04

0.98

0.99

1.00

1.01

1.02

inpp[1.01]

0.9943

inpp[1.03]

0.9835

The green cells above match the answers in the text. The function plot looks almost linear
in the small interval.

19.3 Interpolation 808revB.nb 3

The green cells above match the answers in the text. The function plot looks almost linear
in the small interval.

5. Linear and quadratic interpolation. Find ⅇ-−0.25 and ⅇ-−0.75 by linear interpolation of ⅇ-−x
with x0=0, x1=0.5, x2 = 1 and from it ⅇ-−0.25 and ⅇ-−0.75. Compare the errors. Use 4S-
values of ⅇ-−x.

Clear["Global`*⋆"]

First look at the answers I will be looking for.
f[x_] = ⅇ-−x

ⅇ-−x

f[0.25]

0.778801

f[0.75]

0.472367

I’m only working with the three points. Just to take a look at their range,
Table[{x, f[x]}, {x, {0, 0.5, 1}}]

{0, 1}, {0.5, 0.606531}, 1,
1

ⅇ

I can create the IP. Preserving values expressed in function form makes it much more accu-
rate than pasting in the above output.

inpp2[x_] = InterpolatingPolynomial{0, 1}, {0.5, f[0.5]}, 1,
1

ⅇ
, x

1

ⅇ
+ -−1 +

1

ⅇ
+ 0.309636 x (-−1 + x)

And plot it. Thankfully it is interpolation, not extrapolation, and the values sought are
bracketed, so the flaky curve match should not be a problem within the interval of interest,
which is 0 to 1. The text uses both linear and quadratic interpolation, with much better
numbers produced by the quadratic.

4 19.3 Interpolation 808revB.nb

p1 = Plot[{inpp2[x], ⅇ-−x}, {x, -−2, 3}, ImageSize → 300,
PlotStyle → {{Blue, Thickness[0.008]}, {Orange, Thickness[0.004]}}]

-−2 -−1 1 2 3

2

4

6

inpp2[0.25]

0.783913

0.7839130646380448` -− 0.7788007830714049`

0.00511228

text error reported for above is 0.0245, greater than yellow. So in this case the Mathematica
method is superior.
inpp2[0.75]

0.467853

% -− 0.4723665527410147`

-−0.00451377

text error for above is 0.0148, greater than yellow. Again, in posting a smaller error, the
linear interpolation of the Mathematica method shows its superiority.

Supposing it is okay to recognize this as Exp, or to something resembling it, there is
another way to do this with FindFit
Clear["Global`*⋆"]

same data used in this little isolated section on experimental method of FindFit

data = {0, 1}, {0.5`, 0.6065306597126334`}, 1,
1

ⅇ
;

a model is chosen similar to the appearance of the data,
model = a Exp[-−k t];

and parameters are solved for, which might make the model usefully compliant.

19.3 Interpolation 808revB.nb 5

fit = FindFit[data, model, {a, k}, t]
FindFit::fmgz: Encountereda gradientthatis effectivelyzero.

The resultreturnedmaynotbe a minimum; it maybe a maximumor a saddlepoint. +

{a → 1., k → 1.}

The model is calculated, resulting in a curve function description.
modelf = Function[{t}, Evaluate[model /∕. fit]]

Function{t}, 1. ⅇ-−1. t

With only trivial parameters in this case, the method does not show to advantage.
Plot[modelf[t], {t, 0, 2}, Epilog → Map[Point, data], ImageSize → 200]

0.5 1.0 1.5 2.0

0.2

0.4

0.6

0.8

1.0

If I got this far I would be able to look at Function{t}, 1. ⅇ-−1. t and understand that
that function would put points on the curve, then define it directly.
m[t_] = Exp[-−t]

ⅇ-−t

m[0.25]

0.778801

0.7788007830714049` -− 0.7788007830714049`

0.

In the scenario imagined, there would be no error with FindFit.
m[0.75]

0.472367

A barrel of shot fish. But the modeling part is intriguing. If I could recognize a curve, get
reasonable k and a values, it might be a good way to do an interpolation. From the documen-
tation I see that WorkingPrecision, PrecisionGoal, and AccuracyGoal are options for
FindFit, unlike InterpolatingPolynomial, which could mean better performance. In
problem 9 I will return to FindFit.

7. Interpolation and extrapolation. Find the quadratic polynomial that agrees with Sin[x]

at x=0, π4 , π2 , and use it for the interpolation and extrapolation of Sin[x] at x = -− π
8 , π

8 ,
3 π
8 , 5 π

8 . Compute the errors.

6 19.3 Interpolation 808revB.nb

7. Interpolation and extrapolation. Find the quadratic polynomial that agrees with Sin[x]

at x=0, π4 , π2 , and use it for the interpolation and extrapolation of Sin[x] at x = -− π
8 , π

8 ,
3 π
8 , 5 π

8 . Compute the errors.

Clear["Global`*⋆"]

First I try the Interpolation command in Mathematica, which works well, but has one
significant drawback. I can’t get the actual equation for the curve which Mathematic cre-
ates. There are two methods of interpolating that are built in, spline and hermite. I test
them both out on the problem points.

f = Interpolation

{0, Sin[0]},
π

4
, Sin

π

4
,

π

2
, Sin

π

2
 , Method → "Spline"

Interpolation::inhr: Requestedorderis toohigh; orderhas beenreducedto {2}. +

InterpolatingFunction Domain: 0, π

2

Output: scalar

g = Interpolation

{0, Sin[0]},
π

4
, Sin

π

4
,

π

2
, Sin

π

2
 , Method → "Hermite"

Interpolation::inhr: Requestedorderis toohigh; orderhas beenreducedto {2}. +

InterpolatingFunction Domain: 0, π

2

Output: scalar

I plot the results of my tests with the two methods of interpolation. There is no visible
difference between them for this set of points.
p1 = Plot[{f[x], g[x]}, {x, 1, 6}, ImageSize → 200,

PlotStyle → {{Blue, Thickness[0.02]}, {White, Thickness[0.005]}},
AspectRatio → 1, AxesOrigin → {0, 0}]

1 2 3 4 5 6

-−5

-−4

-−3

-−2

-−1

1

I put the points into a list for a linear model fit with a second order polynomial. The theory
I saw on StackExchange was that the number of points indicated the necessary degree of
the polynomial. With three points I would then need a cubic polynomial. But I got error
messages when trying to use a cubic, and the text answer only used a square.

19.3 Interpolation 808revB.nb 7

I put the points into a list for a linear model fit with a second order polynomial. The theory
I saw on StackExchange was that the number of points indicated the necessary degree of
the polynomial. With three points I would then need a cubic polynomial. But I got error
messages when trying to use a cubic, and the text answer only used a square.

data = {0, Sin[0]},
π

4
, Sin

π

4
,

π

2
, Sin

π

2

{0, 0},
π

4
,

1

2
,

π

2
, 1

So now I call for a square polynomial, and plot it. The plots of the two approaches to interpo-
lating show different sections of the real domain, and would be a little trouble to overlay
them.

lm = LinearModelFitdata, x2, x, x;
Show[ListPlot[data, PlotStyle → Red, Filling → Bottom],
Plot[lm[x], {x, 0, 125}], Frame → True, ImageSize → 250]

It is easy to acquire the equation for the linear model fit polynomial, which has to be a
significant advantage. Except for the first, very negligible term, the equation matches the
text answer, and I’m going to go green on it.
Normal[lm]

1.54843 × 10-−15 + 1.16401 x -− 0.335749 x2

Now I summarize my experience with the two forms of fitting by placing them both in a
grid, along with test values. The test values require the function to act as extrapolating, as
will as interpolating, functions.
g1 = {"x", "Interpola", "Sin[x]", "Error", "LinModFit", "Error"};

g2 = Table{x, N[f[x]], N[Sin[x]], N[Sin[x]] -− N[f[x]],

lm[x], N[Sin[x]] -− lm[x]}, x, -−
π

8
,

π

8
,
3 π

8
,
5 π

8
;

The interpolated function and the linear fitted polynomial, in this case, produce exactly the
same results, both in terms of calculated values, and in terms of calculated errors.

8 19.3 Interpolation 808revB.nb

Grid[Prepend[g2, g1], Frame → All]

x Interpola Sin[x] Error LinModFit Error
-− π

8
f[-−0.392699] -−0.382683 -−0.382683 -−

f[-−0.392699]
lm-− π

8
 -−0.382683 -−

lm-− π
8

π
8

f[0.392699] 0.382683 0.382683 -−
f[0.392699]

lm π
8
 0.382683 -−

lm π
8

3 π
8

f[1.1781] 0.92388 0.92388 -−
f[1.1781]

lm 3 π
8
 0.92388 -−

lm 3 π
8

5 π
8

f[1.9635] 0.92388 0.92388 -−
f[1.9635]

lm 5 π
8
 0.92388 -−

lm 5 π
8

All the cells in the grid above match the corresponding numbers in the text answer.

9. Error function (35) in appendix A3.1. Calculate the Lagrange polynomial p2[x] for the
5S-values f[0.25] = 0.27633, f[0.5] = 0.52050, f[1.0] = 0.84270 and from p2[x] an
approximation of f[0.75] (= 0.71116).

Clear["Global`*⋆"]

This one is kind of a disappointment. Granted, being given only three points makes it chal-
lenging for any interpolation method, but I guess what bothers me is that the text seems to
do better with the three points than Mathematica does.

I start off with the interpolating polynomial.
inpp[x_] = InterpolatingPolynomial[

{{0.25, 0.27633}, {0.5, 0.52050}, {1.0, 0.84270}}, x]

0.8427 + (0.75516 -− 0.44304 (-−0.25 + x)) (-−1. + x)

A plot shows the problem. On the left below, things look well, the IP is tracking the Erf
function in what looks like a close manner, with just a hint of the underlying blue IP in the
range of the problem values. But on the right, where a zoomed inset of the problem-specific
value is shown, the IP is doing what turns out to be a poor job.
p1 = Plot[{inpp[x], Erf[x]}, {x, 0, 1.05}, ImageSize → 300,

PlotStyle → {{Blue, Thickness[0.004]}, {Orange, Thickness[0.004]}}];

p2 = Plot[{inpp[x], Erf[x]}, {x, 0, 1.05},
ImageSize → 200, PlotRange -−> {{0.745, 0.755}, {0.68, 0.73}},
PlotStyle → {{Blue, Thickness[0.004]}, {Orange, Thickness[0.004]}},
Epilog -−> {{Blue, PointSize[0.02], Point[{0.75, 0.70929}]},

{Blue, PointSize[0.02], Point[{0.75, 0.71116}]}}];

19.3 Interpolation 808revB.nb 9

Row[{p1, p2}]

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

0.746 0.748 0.750 0.752 0.754

0.69

0.70

0.71

0.72

0.73

The two cells below tell the tale. Only one digit of significance agreement (or I guess two, if
I rounded that far). I tried several other interpolation devices, but could not improve it
much until I entered the Erf points for x = 0.7 and x = 0.8. Then I got agreement to four
significant digits. Which seems pretty lame, contrived. If the interpolated function is not a
known one, then it looks like I’m kind of walking in the dark.
inpp[0.75]

0.70929

Table[{n, Erf[n]}, {n, {0.25, 0.5, 0.75, 1.0}}]

{{0.25, 0.276326}, {0.5, 0.5205}, {0.75, 0.711156}, {1., 0.842701}}

I decided to look into this further with FindFit.
Clear["Global`*⋆"]

Here taking the trouble to put in longer versions of the values of the model function.
datai = {{0.25, 0.27632639016823696`},

{0.5, 0.5204998778130466`}, {1.0, 0.8427007929497149`}}

{{0.25, 0.276326}, {0.5, 0.5205}, {1., 0.842701}}

Here building a Interpolation function from the more precise values.
f = Interpolation[datai]

Interpolation::inhr: Requestedorderis toohigh; orderhas beenreducedto {2}. +

InterpolatingFunction Domain: {{0.25, 1.}}
Output: scalar

Here getting the same old imprecision.
f[.75]

0.709291

Getting a solution for the sine try.

10 19.3 Interpolation 808revB.nb

ffd = FindFit[datai, a Sin[b x], {a, b}, x] (*⋆ using sine *⋆)

{a → 0.884417, b → 1.26191}

Getting a solution for the parabola try.

ffp = FindFitdatai, a + b x + c x2, {a, b, c}, x, WorkingPrecision → 20
(*⋆using parabola *⋆)

FindFit::precw: The precisionof thedataandmodelfunction(MachinePrecision) is lessthanthespecifiedWorkingPrecision(20). +

{a → -−0.023229117527556408795,
b → 1.3089860708851408511, c → -−0.44305616040786954812}

Getting a solution for the exponential try.

ffe = FindFit[datai, a + b ⅇ-−c x, {a, b, c}, x, WorkingPrecision → 20]
(*⋆ using exponential *⋆)

FindFit::precw: The precisionof thedataandmodelfunction(MachinePrecision) is lessthanthespecifiedWorkingPrecision(20). +

{a → 1.2641621447600258634,
b → -−1.3121809743770445164, c → 1.1357178165686667905}

The exponential function
te[x_] =
1.2641621447600258633826662088703013408502493800233056750939`20. +
-−1.3121809743770445164132764560080587451161751536628277667149`20.1
ⅇ-−1.1357178165686667904505421743546779928779713927415879630267`20. x

1.2641621447600258634 -− 1.3121809743770445164 ⅇ-−1.1357178165686667905 x

fails to give an accurate answer.
te[0.75]

0.7043185020187743` (*⋆ exponential fails *⋆)

p4 = Plot[te[x], {x, 0, 2}, PlotStyle → {Green, Thickness[0.003]}];

p1 = ListPlot[datai, ImageSize → 400];

tr[x_] = 0.8844174815516758` Sin[1.2619134491291153` x]

0.884417 Sin[1.26191 x]

p3 = Plot[tr[x], {x, 0, 2}, PlotStyle → {Red, Thickness[0.003]}];

19.3 Interpolation 808revB.nb 11

fp[x_] =
-−0.0232291175275564087954194292251486331232322306082285708689`20. +
1.3089860708851408510611236124532297253618828340786412697562`20. x -−
0.4430561604078695481234717590268701314905913797433497845776`20. x2

-−0.023229117527556408795 +
1.3089860708851408511 x -− 0.44305616040786954812 x2

p2 = Plot[fp[x], {x, 0, 2}, PlotStyle → {Blue, Thickness[0.003]}];

fp[0.75]

0.7092913454068726` (*⋆ parabola fails *⋆)

tr[0.75]

0.7175603527695268` (*⋆ sine fails *⋆)

Nothing I tried could produce the desired accuracy based on only three points. I also tried a
double exponential, of the form a+b ⅇ-−c x-−d which is actually fairly close to the Erf function,
but the result was even worse than any of the others.
Show[p1, p2, p3, p4]

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.2

0.4

0.6

0.8

In one final stab, I add two extra points.
Table[{n, Erf[n]}, {n, {0.0, 0.25, 0.5, 0.8, 1.0}}]

{{0., 0.}, {0.25, 0.276326},
{0.5, 0.5205}, {0.8, 0.742101}, {1., 0.842701}}

inppe[x_] = InterpolatingPolynomial[{{0.`, 0.`},
{0.25`, 0.27632639016823696`}, {0.5`, 0.5204998778130466`},
{0.8`, 0.7421009647076605`}, {1.`, 0.8427007929497149`}}, x];

inppe[0.75]

0.711161

And arriving at essentially the same result which the text claims for its poly, based on three
values of 5S. I think the following cells show the basic problem with this quest. The
requested order cannot effectively be greater than n-1, where n is the number of points
considered in interpolation. With only the three points given in the problem, the fit, a
square, can’t be very good. (Note that in the first try ‘rh’, the added points are outside the
span of interest.)

12 19.3 Interpolation 808revB.nb

And arriving at essentially the same result which the text claims for its poly, based on three
values of 5S. I think the following cells show the basic problem with this quest. The
requested order cannot effectively be greater than n-1, where n is the number of points
considered in interpolation. With only the three points given in the problem, the fit, a
square, can’t be very good. (Note that in the first try ‘rh’, the added points are outside the
span of interest.)

In[13]:= rh = Interpolation[{{0.1, Erf[0.1]}, {0.25, Erf[0.25]},
{0.50, Erf[0.50]}, {1.0, Erf[1.0]}, {1.5, Erf[1.5]}},

Method → Spline, InterpolationOrder → 5]

Interpolation::inhr : Requestedorderis toohigh; orderhas beenreducedto {4}. +

Out[13]= InterpolatingFunction Domain: {{0.1, 1.5}}
Output: scalar

In[14]:= rh[0.75]

Out[14]= 0.711623

Compare with
In[16]:= rh3 =

Interpolation[{{0.25, Erf[0.25]}, {0.50, Erf[0.50]}, {1.0, Erf[1.0]}},
Method → Spline, InterpolationOrder → 5]

Interpolation::inhr : Requestedorderis toohigh; orderhas beenreducedto {2}. +

Out[16]= InterpolatingFunction Domain: {{0.25, 1.}}
Output: scalar

In[17]:= rh3[0.75]

Out[17]= 0.709291

which gives the familiar degree of imprecision.

11. Cubic Lagrange interpolation. Bessel function J0. Calculate and graph L0, L1, L2, L3
with x0 = 0, x1 =1, x2 =2, x3 = 3 on common axes. Find p3[x] for the data (0,1), (1,
0.765198), (2, 0.223891), (3, -0.260052) (values of the Bessel function J0[x]). Find p3 for
x = 0.5, 1.5, 2.5, and compare with the 6S-exact values 0.938470, 0.511828, -−0.048384.

Examples 1 and 2 in the text deal with the Ln quantities that hallmark Lagrange interpola-
tion. A bit labor intensive for me. I will proceed using InterpolatingPolynomial, I think.
Clear["Global`*⋆"]

data = {{0, 1}, {1, 0.765198}, {2, 0.223891}, {3, -−0.260052}}

{{0, 1}, {1, 0.765198}, {2, 0.223891}, {3, -−0.260052}}

19.3 Interpolation 808revB.nb 13

inpp[x_] = InterpolatingPolynomial[data, x]

-−0.260052 + (-−3 + x) (-−0.420017 + (-−0.0926077 + 0.0606448 (-−1 + x)) x)

p1 = Plot[inpp[x], {x, -−4, 4},
ImageSize → 200, PlotStyle → {{Blue, Thickness[0.004]}}];

gh = Table[{x, inpp[x]}, {x, data}]

{{{0, 1}, {1., 0.765198}}, {{1, 0.765198}, {0.765198, 0.861319}},
{{2, 0.223891}, {0.223891, 0.992776}},
{{3, -−0.260052}, {-−0.260052, 0.965931}}}

inpp[0.5]

0.943654

inpp[1.5]

0.510116

inpp[2.5]

-−0.04799281250000004` (*⋆ text answer was -−0.047991 *⋆)

gk = {{0.5, 0.943654}, {1.5, 0.510116}, {2.5, -−0.0479928}}

{{0.5, 0.943654}, {1.5, 0.510116}, {2.5, -−0.0479928}}

p3 = ListPlot[gk];

Show[p1, p3]

-−4 -−2 2 4

-−8

-−6

-−4

-−2

The curve fit looks pretty good to me.

13. Lower degree. Find the degree of the interpolation polynomial for the data (-4, 50),
(-2, 18), (0, 2), (2, 2), (4, 18), using a difference table. Find the polynomial.

Clear["Global`*⋆"]

Needless to say, I don’t use a difference table on this one.
data = {{-−4, 50}, {-−2, 18}, {0, 2}, {2, 2}, {4, 18}}

{{-−4, 50}, {-−2, 18}, {0, 2}, {2, 2}, {4, 18}}

14 19.3 Interpolation 808revB.nb

inpp[x_] = InterpolatingPolynomial[data, x]

50 + (4 + x) (-−16 + 2 (2 + x))

p1 = Plot[inpp[x], {x, -−4, 4},
ImageSize → 200, PlotStyle → {{Blue, Thickness[0.004]}}]

-−4 -−2 2 4

10

20

30

40

50

I have the equation of the interpolation function, and it looks like the degree is 2. No test
points here though. Working with five seeds points, it might indicate likelihood of good
agreement and small errors.

15. Divided differences. Obtain p2 in example 2 from numbered line (10), p. 814.

There is a notebook with specific code of NDD at http://nm.mathforcollege.com/topics/newton_di-
vided_difference_method.html, but since it is from 2002, I would be surprised if it worked out of
the box. It does look specific though. There is a very modern but maybe too extensive
SEMma discussion at http://nm.mathforcollege.com/topics/newton_divided_difference_method.html. I
don’t currently have the necessary curiosity to delve into how NDD can be used in
Mathematica.

17. Backward difference formula (18). Use p2[x] in numbered line (18), p. 818, and the
values of erf x, x = 0.2, 0.4, 0.6 in table A4 of appendix 5, compute erf[0.3] and the
error. (4S-exact erf[0.3] = 0.3286).

I will avoid the backward difference and just go with InterpolatingPolynomial.
Clear["Global`*⋆"]

Table[{x, Erf[x]}, {x, {0.2, 0.4, 0.6}}]

{{0.2, 0.222703}, {0.4, 0.428392}, {0.6, 0.603856}}

data = {{0.2`, 0.22270258921047847`},
{0.4`, 0.42839235504666856`}, {0.6`, 0.603856090847926`}}

{{0.2, 0.222703}, {0.4, 0.428392}, {0.6, 0.603856}}

inpp[x_] = InterpolatingPolynomial[data, x]

0.603856 + (0.952884 -− 0.377825 (-−0.2 + x)) (-−0.6 + x)

19.3 Interpolation 808revB.nb 15

va = inpp[0.3]

0.329326

vb = Erf[0.3]

0.328627

with an error the size of
vb -− va

-−0.000698966

Mathematica’s InterpolatingPolynomial came up with the same answer as the text.
p1 = Plot[inpp[x], {x, -−4, 4},

ImageSize → 200, PlotStyle → {{Blue, Thickness[0.004]}},
Epilog → {Red, PointSize[0.03], Point[{0.3, 0.329326}]}]

-−4 -−2 2 4

-−10

-−8

-−6

-−4

-−2

This problem dealt with interpolation of the Erf function , the same as in problem 9. There
the Efr function was an embarrassing incident, but here it gives less trouble, with a reassur-
ingly small error.

General comments on Interpolation.
1. My go-to method is InterpolatingPolynomial. (as in problem 17).
2. If IP seems to fall short, FindFit should be looked at. (as discussed in problems 5 and 9).
3. If these two approaches don’t work, a custom Fit function, (using the method described
in the Intro), may be worth a try.

16 19.3 Interpolation 808revB.nb

